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Abstract–This paper is concerned with tracking of 
ground targets on roads and investigates possible ways 
to improve target state estimation via fusing a target’s 
track with information about a road along which the 
target is believed to be traveling. A target track is 
estimated by a surveillance radar whereas a digital 
map provides the road network of a region under 
surveillance. When the information about roads is as 
accurate as (or even better than) radar measurements, 
it is desired naturally to incorporate such information 
(fusion) into target state estimation. In this paper, 
roads are modeled with analytic functions and its 
fusion with a target track is cast as linear or nonlinear 
state constraints in an optimization procedure. The 
constrained optimization is then solved with the 
Lagrangian multiplier, leading to a closed-form 
solution for linear constraints and an iterative solution 
for nonlinear constraints. Geometric interpretations of 
the solutions are provided for simple cases. Computer 
simulation results are presented to illustrate the 
algorithms.  
Keywords:  Track fusion, Road map, State constraints, 
Lagrangian multiplier, Iterative solution 

1. Introduction 
With the rapid building up of geographic information 
system (GIS) including digital road maps (DRM) and 
digital terrain elevation database (DTED), information 
about roads becomes more accurate, which is also more 
up to date and easily accessible. Target tracking is not 
unfamiliar with road maps. As examples, target tracks 
are represented by colorful dots and lines blinking 
along road networks on a large screen, often on top of a 
topographic or satellite image, in a situation room, in 
an air traffic control tower, and on a radar operator 
screen. In these applications, however, target tracks 
and road networks are merely displayed together with 
little or no interaction (fusion) in the data processing 
level. 

When the information about roads is as accurate as 
(or even better than) radar measurements, it is desired 
naturally to incorporate such information (fusion) into 
target state estimation. When a vehicle travels off-road 

or on an unknown road, the state estimation problem is 
unconstrained. However, when the vehicle is traveling 
on a known road, be it straight or curved, the state 
estimation problem can be cast as constrained with the 
road network information available from digital 
road/terrain maps. In the past, such constraints are 
often ignored (or left for the users to perceive it as in 
the display example mentioned above). The resulting 
estimates, even obtained with the Kalman filter, cannot 
be optimal because they do not make full use of this 
additional information about state constraints. 

To use such state constraints, previous attempts can 
be put into several groups. The first group is to 
incorporate road information into the state estimation 
process [5, 6, 9, 11]. The second group is to treat state 
constraints as perfect (pseudo) measurements. For a 
road segment, its analytic model not only constrains the 
target position but also the direction of the target’s 
velocity vector. Indeed, the target velocity vector is 
closely aligned with the road orientation for a linear 
segment and with the tangent vector at the target 
position for a nonlinear segment. Furthermore, an 
estimate of centripetal acceleration can be obtained 
given the curvature and the target speed. 

In the third group, an unconstrained Kalman filter 
solution is first obtained and then the unconstrained 
state estimate is projected onto the constrained surface 
[10]. This technique can also be viewed as post-
processing (estimation or updating) correction [11] or 
track to road fusion referred to as in this paper. In 
conventional track fusion, two or more tracks are 
available, each consisting of an estimate of the 
underlying track with its estimation error covariance. 
The fused track is typically found that minimizes the 
sum of covariance–weighted state errors squared [3, 4].  
In contrast to this conventional track fusion that 
operates on individual state values (points), track 
fusion with road involves a state value (a point) and a 
subset of state values (an interval). In this paper, roads 
are modeled with analytic functions and its fusion with 
a target track is therefore formulated as linear or 
nonlinear state constraints in an optimization 
procedure. 
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In this paper, the constrained optimization is solved 
with the Lagrangian multiplier, leading to a closed-
form solution for linear constraints and an iterative 
solution for nonlinear constraints. In the latter case, we 
present a method that allows for the use of second-
order nonlinear state constraints exactly. The method 
can provide better approximation to higher order 
nonlinearities. The new method is based on a 
computational algorithm that iteratively finds the 
Lagrangian multiplier. The use of a second-order 
constraint vs. linearization is a tradeoff between 
reducing approximation errors to higher-order 
nonlinearities and keeping the problem 
computationally tractable. 

Although the main results are restricted to state 
equality constraints, it can be extended to inequality 
constraints. According to [10], the inequality 
constraints can be checked at each time step of 
filtering. If the inequality constraints are satisfied at a 
given time step, no action is taken since the inequality 
constrained problem is solved. If the inequality 
constraints are not satisfied at a given time step, then 
the constrained solution is applied to enforce the 
constraints. 

2. Track Fusion with Linear Road Segment 
When a road segment is straight, it can be modeled as a 
linear state constraint. In this section, we first 
summarize the results for linearly constrained state 
estimation [10] as an approach to track fusion with 
linear road segments. We then show that this linearly 
constrained state estimation is equivalent to use of 
constraints as measurements in state update. Finally, 
we provide a simple geometric interpretation of the 
linearly constrained state estimation for track to road 
fusion. 

Consider a linear time-invariant discrete-time 
dynamic system together with its measurement as 

kkkk wuBxAx ++=+1  (1a) 

kkk
vxCy +=  (1b) 

where the underscore indicates a vector quantity, the 
subscript k is the time index, x is the state vector, u is a 
known input, y is the measurement, and w and v are 
state and measurement noise processes, respectively. It 
is implied that all vectors and matrices have compatible 
dimensions, which are omitted for simplicity. 

The goal is to find an estimate denoted by kx̂  of xk 
given the measurements up to time k denoted by Yk = 
{y0, …, yk}. Under the assumptions that the state and 
measurement noises are uncorrelated zero-mean white 
Gaussian with w ~ N{0, Q} and v ~ N{0, R} where Q 
and R are positive semi-definite covariance matrices, 

the Kalman filter provides an optimal estimator in the 
form of }|{ˆ kkk YxEx =  [2]. Starting from an initial 
estimate }{ˆ 00 xEx =  and its estimation error covariance 
matrix })ˆ)(ˆ{( 00000

TxxxxEP −−=  where the 
superscript T stands for matrix transpose, the Kalman 
filter equations specify the propagation of kx̂  and Pk 
over time and the update of kx̂  and Pk by measurement 
yk as 

kkk uBxAx +=+ ˆ1  (2a) 

QAAPP T
kk +=+1  (2b) 

)(ˆ 11111 +++++ −+= kkkkk xCyKxx  (2c) 

111 )( +++ −= kkk PCKIP  (2d) 
1

11 )( −
++ += RCCPCPK T

k
T

kk  (2e) 

where 1+kx  and 
1+kP  are the predicted state and 

prediction error covariance, respectively. 
Now in addition to the dynamic system of (1), we are 

given the linear state constraint equation 
dxD k =  (3) 

where D is a known constant matrix of full rank, d is a 
known vector, and the number of rows in D is the 
number of constraints, which is assumed to be less than 
the number of states. If D is a square matrix, the state is 
fully constrained and can thus be solved by inverting 
(3). Although no time index is given to D and d in (3), 
it is implied that they can be time-dependent, leading to 
piecewise linear constraints. 

The constrained Kalman filter according to [10] is 
constructed by directly projecting the unconstrained 
state estimate kx̂  onto the constrained surface S = {x: 
Dx = d}. It is formulated as the solution to the problem 

)ˆ()ˆ(minarg xxWxxx T

Sx
−−=

∈
 (4) 

where W is a symmetric positive definite weighting 
matrix.  

Derived using the Lagrangian multiplier technique 
[16], the solution to the constrained optimization in (4) 
is given by 

)ˆ()(ˆ 111 dxDDDWDWxx TT −−= −−−  (5) 

As described above, the linear constrained estimator 
(5) can be obtained by different methods. It is shown in 
this section that it is also equivalent to the solution 
where the linear state constraints are considered as 
perfect (pseudo) measurements. 

For the linear time-invariant discrete-time dynamic 
system (1a) and its measurement (1b), consider the 
linear state constraint (3) as another measurement to 
the system, which can be used to perform the filter 



 

 

measurement update (2c) and (2d) right after (1b) 
without the filter time propagation (2a) and (2b) (i.e., 
stay the same). To apply (2), we identify the following 
equivalence: 
A = I, B = 0; Q = 0 (6a) 
C = D, R = 0, yk = d (6b) 

Given the unconstrained solution ( kx̂ , kP ), the 
prediction step is given by (2a) and (2b): 

1+kx  = kx̂  (7a) 

1+kP  = kP  (7b) 

The Kalman filter gain is given by: 
1

1 )( −
+ = T

k
T

kk DDPDPK  (8) 

The updated state and error covariance becomes: 
)ˆ()(ˆˆ 1

1 k
T

k
T

kkk xDdDDPDPxx −+= −
+  (9a) 

k
T

k
T

kkk DPDDPDPPP 1
1 )( −

+ −=  (9b) 

If we choose 1−= kPW , (9a) becomes 

)ˆ()(ˆˆ 111
1 k

TT
kk xDdDDWDWxx −+= −−−

+  (10a) 

)ˆ()(ˆ 111 dxDDDWDWx k
TT

k −−= −−−  (10b) 

which is exactly the same as the solution given by (5). 
Assume that the state dimension is n and the number 

of linear constraints is m < n. For x ∈ Rn, the constraint 
surface S = {x: Dx = d} is not a subspace simply 
because for d ≠ 0, the null vector is not inside S. 

To construct a subspace, first find an arbitrary point 
x0 ∈ S and then define ξ = x – x0. This is equivalent to 
shifting the origin of the coordinates to x0, thus 
performing an affine transformation denoted by T. For 
all x ∈ S, the corresponding shifted vector ξ has the 
following property: 
Dξ = D(x – x0) = Dx – Dx0 = d – d = 0 (11) 

In other words, the constraint surface after the affine 
transformation T becomes a subspace, denoted by L = 
TS = {ξ: Dξ = 0}, which has a dimension n-m. The 
affine transformation is illustrated in Fig. 1. 

We are now to express L. But first, the row vectors 
of D can be expressed as: 

[ ]m
T dddD 21=  (12) 

Since D is of full rank by assumption, the row 
vectors of D can be used as the non-orthogonal bases 
for a subspace denoted by D = span{d1, d2, …, dm}. In 
light of (11) and by definition of L, it is easy to see that 
D is an orthogonal complement of L, that is, D⊥L and 
D⊕L = Rn.  

For δ ∈ D, it can be written as: 

[ ] cD

c

c
c

ddddc T

m

m

m

i
ii =



















==∑
=

2

1

21
1

δ
 (13) 

Then for ξ ∈ L, we have 

0,, ==>=>=<< ξξδξξδ DccD TTT  (14) 

where <a, b> = aTb is the inner product defined on Rn. 
By the principle of orthogonality, an arbitrary vector 

ξ can be decomposed into its projections onto the 
orthogonal complements D and L, denoted by ξD and 
ξL, respectively, as  

LD
ξξξ +=  (15) 

Adding x0 to both sides of (15), we can express the 
vectors in the original coordinates as: 

*
00 xxxx

DLD
+=++=+= ξξξξ  (16) 

The projection of the arbitrary vector on the 
constraint subspace L and the constraint surface S can 
be obtained, respectively, as: 

DL
ξξξ −=  (17a) 

D
xx ξ−=*  (17b) 

To obtain ξD, express it as a linear combination of 
the non-orthogonal bases of DT with the coefficient 
vector c as: 

[ ] cD

c

c
c

ddddc T

m

m

m

i
iiD

=











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





==∑
=

2

1

21
1

ξ
 (18) 

Again, by the principle of orthogonality, the 
projection error vector ξ – ξD is orthogonal to D, i.e., 
each an every basis of it: 

0)(,, =−>=−>=<−< cDddcDd TT
ii

T
iD ξξξξ , 

  i = 1, …, m (19) 
Stacking these orthogonality conditions, we obtain 

0)(2

1

=−



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













cD

d

d
d

T

T
m

T

T

ξ
 or D(ξ - DTc) = 0 (20) 

Since DDT is an m×m matrix and invertible, the 
coefficient vector can be obtained as: 

ξDDDc T 1)( −=  (21) 

Bringing (21) back to (18) gives the projection 
vector as: 



 

 

ξξξ PDDDD TT
D

== −1)(  (22) 

where DDDDP TT 1)( −=  is usually referred to as the 
projection matrix onto D and (I-P) is the projection 
matrix onto L. 

Bringing (22) back to (17) gives 

ξξξξ )( PIP
L

−=−=  (23a) 

)( 0
* xxPxPxx −−=−= ξ  (23b) 

Bringing the expression for P into (23b) gives 

)()( 0
1* xxDDDDxx TT −−= −  

 )()( 0
1 xDxDDDDx TT −−= −  

 )()( 1 dxDDDDx TT −−= −  (24) 

where Dx0 = d is used to arrive at the last equation 
because of x0 ∈ S. 

(24) is exactly the same as (5) when W = I. This 
offers a geometrical interpretation that the linear 
constrained estimation is the orthogonal projection of 
the unconstrained estimate onto the constrained 
surface. It provides a theoretical justification of the 
intuitive practice of finding a point along the road that 
is of the shortest distance. 

The theory still holds for W ≠ I. The results 
presented in this paper complement [10], providing an 
interesting geometrical interpretation to the linear 
constrained estimation by estimate projection. 

3. Track Fusion with Nonlinear Road Segments 
When a road segment is curved, it can be modeled as a 
nonlinear state constraint. In this section, we first 
analyze the linearizing approach and the associated 
constraint approximation error. We then present an 
iterative solution to a second order state constraint. 
Finally, we offer a geometric interpretation of a 
solution under a circular constraint and a simple 
approach to a more general second order state 
constraint. 

To deal with nonlinearity, a simple approach is to 
project the unconstrained state estimate onto linearized 
state constraints. Once the constraints are linearized, 
the results presented in the previous section for linear 
cases can be applied. However, linearization introduces 
constraint approximation error, which is a function of 
the nonlinearity and, more importantly, of the point 
around which the linearization takes place. This may 
lead to an undesired divergence problem as analyzed 
below. 

Fig. 2 illustrates this linearization process and 
identifies possible errors associated with linear 
approximation of a nonlinear state constraint. As 
shown, the previous constrained state estimate −x  lies 

somewhere on the constrained surface but is away from 
the true state x. The projection of the unconstrained 
state estimate x̂  onto the approximate linear state 
constraint produces the current constrained state 
estimate +x , which is however subject to the constraint 
approximation error. Clearly, the further away is −x  
from x, the larger is the approximation-introduced 
error. More critically, such an approximately linear 
constrained estimate may not satisfy the original 
nonlinear constraint. It is therefore desired to reduce 
this approximation-introduced error by including 
higher-order terms while keeping the problem 
computationally tractable. One possible approach is 
presented in the next section. 

Naturally formed roads tend to have more bends and 
turns of irregular shapes (high nonlinearity). Even 
highways have to follow terrain contours when 
crossing mountains. Locally, however, it suffices to 
represent a curved road segment by a second-order 
state constraint function as 

[ ] 








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
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


=

1
1)(

0

x
mm
mM

xxf T
T   

 00 =+++= mmxxmxMx TTT  (26) 

which can be viewed as a second-order approximation 
to an arbitrary nonlinearity in a digital terrain map. 

Similar to (4), we can formulate the projection of an 
unconstrained state estimation onto a nonlinear 
constraint surface as the constrained least-square 
optimization problem 

)()(minargˆ xHzxHzx T

x
−−=  (27a) 

subject to f(x) = 0 (27b) 
If we let W = HTH and z = H x̂ , the formulation in 

(27) becomes the same as in (4). In a sense, (27) is a 
more general formulation because it can also be 
interpreted as a nonlinear constrained measurement 
update or a projection in the predicted measurement 
domain. 

The solution to the constrained optimization (27) can 
be obtained again using the Lagrangian multiplier 
technique as [12] 

)()(ˆ 11 λλ eIVGx T −− ΣΣ+=  (28a) 

q(λ) = 
0222

22

1
)(

2
)1(

)(
m

tee
i i

ji

i i

ii +
+

+
+ ∑∑ λσ

λ
λσ

σλ = 0 (28b) 

where G is an upper right diagonal matrix resulting 
from the Cholesky factorization of W = HTH, V, an 
orthonormal matrix, and Σ, a diagonal matrix with its 
diagonal elements denoted by σi, are obtained from the 
singular value decomposition of the matrix LG-1, and 



 

 

e(λ) = […  ei(λ), …] T = VT(GT)–1(HTz - λm) (29c) 
t = [… ti …] T = VT(GT)–1m (29d) 

As a nonlinear equation in λ, it is difficult to find a 
closed-form solution in general for the nonlinear 
equation q(λ) = 0 in (28b). Numerical root-finding 
algorithms may be used instead. For example, the 
Newton’s method is used below. Denote the derivative 
of q(λ) with respect to λ as )(λq . Then the iterative 
solution for λ is given by 

)(
)(

1
k

k
kk q

q
λ
λλλ −=+

, starting with λ0 = 0 (30) 

Now consider the special case where W = HTH, z = 
H x̂ , and m = 0, that is, a quadratic constraint on the 
state. Under these conditions, t = 0 and e is no longer a 
function of λ so its derivative relative to λ vanishes. 
The quadratic constrained solution is then given by 
x  = (W+λM)-1W x̂  (31a) 

where the Lagrangian multiplier λ is obtained 
iteratively as in (30) with the corresponding q(λ) and 

)(λq  given by 

0
)1(

)( 022

22

=+
+

=∑ m
e

q
i i

ii

λσ
σλ   (31b) 

∑ +
−=

i i

iie
q 32

42

)1(
2)(

λσ
σλ  (31c) 

The solution of (31) is also called the constrained 
least squares [8: pp 765-766], which was previously 
applied for the joint estimation and calibration [13]. 
Similar techniques have been used for the design of 
filters for radar applications [1] and in robust minimum 
variance beamforming [7]. When M = 0, the constraint 
in (26) degenerates to a linear one. The constrained 
solution is still valid. However, the iterative solution 
for finding λ is no longer applicable but a closed-form 
solution is available instead as given in (5).  

Consider a simple example where a target travels 
along a circle. For this case, in fact, a closed-form 
solution can be derived. Assume that W = I2, M = I2, m 
= 0, and m0 = -r2. The nonlinear constraint can be 
equivalently written as: 
xTx = r2  (32) 

The quadratic constrained estimate given in (31a) 
becomes: 

xxWMWx ˆ)1(ˆ)( 11 −− +=+= λλ  (33) 

Bringing (35) back to (34) gives: 
2

1
ˆ

)
1

ˆ
( rxxxx TT =

++
=

λλ
 (34) 

The solution for λ is: 

1
ˆ

1
ˆ 2 −=−=

r
x

r
xxT

λ  (35) 

where 
2

⋅  stands for the 2-norm of the vector. 

Bringing the solution for λ in (35) back to (33) gives: 

2
ˆ
ˆ

x
xrx =  (36) 

This indicates that for this particular case with a 
circular constraint, the constraining results in 
normalization. This further suggests a simple solution 
for some practical applications. When a target is 
traveling along a circular path (or approximately so), 
one can first find the equivalent center of the circle 
around which to establish a new coordinate system. 
Then express the unconstrained solution in the new 
coordinate and normalize it as the constrained solution. 
Finally convert it back to the original coordinates. 

4. Simulation Results 
In this simulation example, a ground vehicle is 
assumed to travel along a circular road segment as 
shown in Fig. 2. The turn center is chosen as the origin 
of the x-y coordinates and the turn radius is r = 100 m. 
The target maintains a constant turn rate of 5.7 deg/s 
with an equivalent linear speed of 10 m/s. The initial 
state is 

[ ]T
k yyxxx ==0 = [100 m, 0 m/s, 0 m 10 m/s]T (37) 

The vehicle is tracked by a radar sensor with a 
sampling interval of T = 1 s. The sensor provides 
position measurements of the vehicle as 

kkk
vxy +







=
0100
0001  (38) 

where the measurement error v ~ N(0, R) is a zero-
mean Gaussian noise, independent in the x- and y-axis. 
The covariance matrix R = diag([σrx

2  σry
2]) uses the 

particular values of σrx = σry = 7 m in the simulation. 
The radar implements a simple tracker based on the 

following discrete-time second-order kinematic model 
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 (39) 

where the process noise w ~ N(0, Q) is also a zero-
mean Gaussian noise, independent of the measurement 
noise v. The covariance matrix Q = diag([ 2

xσ   2
yσ ]) uses 

the particular values of 
xσ  = 

yσ  = 0.32 m/s2 in the 
simulation. 



 

 

When represented in a Cartesian coordinate system, 
a target traveling along a curved road is certainly 
subject to acceleration in both the x- and y-axis. 
However, no effect is made in this simulation to 
optimize the tracker for maneuver but merely to select 
Q and the initial conditions so as to focus on 
constraining the estimates. The initial state is selected 
to be the same as the true state, i.e., 

00ˆ xx =  and the 
initial estimation error covariance is selected to be 
P0 = diag([52  12  52  12]) (42) 

Fig. 3 shows sample trajectories of the linear 
constrained Kalman filter. There are 5 curves and 2 
series of data points in the figure. The true state is 
represented by a series of dots (·) at consecutive 
sampling instants, which is plotted on the solid line 
being the road segment. The corresponding 
measurements are a series of circles (o). 

The estimates of the unconstrained Kalman filter are 
shown as the connected triangles (∆) whereas those of 
linearly constrained Kalman filters are shown as the 
connected crosses (x), stars (*), and pluses (+) for three 
linear approximations of the nonlinear constraint of 
curved road, respectively. 

In the first approximation (the line with cross x 
labeled “linear constraint 1”), a single linearizing point 
at θ1 = 10o is chosen to cover the entire curved road, 
where θ is the angle made relative to the x-axis, 
positive in the counter-clock direction. The linearized 
state constraint at θ1 can be written as 
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θ  (40) 

Although all estimates are faithfully projected by the 
constrained filter onto this linear constraint, tangential 
to the curve at the linearizing point, it runs away from 
the true trajectory and the resulting errors continue to 
grow. The apparent divergence is caused by the choice 
of linearization. 

In the second approximation (the line with star * 
labeled “linear constraint 2”), two linearizing points at 
θ1 = 15o and θ2 = 80o are chosen to cover the curved 
road with two linear segments. The switching point 
from one linear segment to the other in this case is at θ 
= 45o. As shown, the estimates are projected onto one 
of the two linear segments. Except near the corner 
where the two linear approximations intersect (which is 
far away from both linearizing points), the linear 
constrained estimates typically outperform the 
unconstrained estimates (closer to the true state). This 
is better illustrated in Fig. 4 where the upper plot is for 
the absolute position error in x while the lower plot is 
for the absolute position error in y, both plotted as a 
function of time. 

Still with two linearizing points and the same 
switching point at θ = 45o, the third approximation (the 
line with star + labeled “linear constraint 3”) adjusts 
linearizing points to θ1 = 20o and θ2 = 70o. A better 
overall performance is achieved as shown in Fig. 4. 

It is clear from Fig. 3 that a nonlinear constraint can 
be approximated with linear constraints in a piecewise 
fashion. By judicious selection of the number of linear 
segments and their placement (i.e., the point around 
which to linearize), a reasonably good performance can 
be expected. In the limit, a nonlinear function is 
represented by a piecewise function composed of an 
infinite number of linear segments. This naturally leads 
to the use of nonlinear constraints. 

Fig. 5 shows sample trajectories of the nonlinear 
constrained Kalman filter. There are 2 curves and 4 
series of data points in the figure. The true state is still 
represented by a series of dots (·) at the sampling 
instants, which is plotted on the solid line of road 
segment. The corresponding measurements are again a 
series of circles (o). The unconstrained Kalman filter is 
shown as the connected crosses (x) whereas the 
estimates of nonlinearly constrained Kalman filters are 
shown as a series of connected pluses (+) and stars (*) 
for two implementations, respectively. 

The first implementation (the series of pluses +) only 
applies the nonlinear constraint to the position estimate 
whereas the second implementation (the series of stars 
*) applies constraints to both the position and velocity 
estimates. In fact, we encounter a hybrid (mixed) linear 
and nonlinear state constraint situation. The 
constrained position estimate is given by (31) for the 
quadratic case (equivalent to either (36) for a circular 
road). Since the velocity direction is along the tangent 
of the road curve, the constrained velocity estimate is 
obtained by the following projection 

µµ)ˆ(ˆ T
nedunconstraidconstraine vv =  (41) 

where [ ]Tyxv ˆˆˆ =  is the estimated velocity vector and µ 
= [-sinθ  cosθ]T is the constrained unit direction vector 
associated with the constrained position at 

)ˆ/ˆ(tan 1 xy−=θ . 

For simplicity, the unconstrained estimation error 
covariance is not modified in the present simulation 
after the constrained estimate is obtained using the 
projection algorithms in (31) and (41). The 
implementation is therefore pessimistic (suboptimal) in 
the sense that it does not take into account the 
reduction in the estimation error covariance brought in 
by constraining. One consequence of this simplification 
is more volatile state estimates. To quantify this effect, 
one approach is to project the unconstrained probability 
density function (i.e., a normal distribution with  



 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Geometrical Interpretation of Linear Constrained Solution 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Errors in Linear Approximation of Nonlinear State Constraints 
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Fig. 3. Sample Trajectories for Linear Constrained Kalman Filter 
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Fig. 4. Linear Constrained Position Errors vs. Time 
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Fig. 5. Sample Trajectories for Nonlinear Constrained Kalman Filter 
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Fig. 6. Nonlinear Constrained Position Errors vs. Time 
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support on the whole state space) onto the nonlinear 
constraint. Statistics can then be calculated from the 
constrained probability density function with the 
constraint as its support. Again, the resulting error 
ellipse represented by the covariance matrix is only an 
approximation to the second order. 
As shown in Fig. 5, both the nonlinear constrained 
estimates fall onto the road as expected. Overall the 
position and velocity constrained estimates are better 
(closer to the true state) than the position-only 
constrained estimates. This is illustrated in Fig. 6 
where the upper plot is for the absolute position error 
in x while the lower plot is for the absolute position 
error in y. 

A Monte Carlo simulation is used to generate the 
RMS errors of state estimation. The results are based 
on a total of 100 runs across 16 updates and 
summarized in Table 1. The performance improvement 
of the nonlinear constrained filter over the linearized 
constrained filter is demonstrated. 

Table 1. RMS Estimation Errors 
RMS Estimation Error 

Estimators 
Position (m) Velocity (m/s) 

Unconstrained 8.3663  4.2640  
Best Linear 
Constrained 5.5386 2.5466 

Nonlinear 
Constrained 1.8056 0.4252 

 
5. Conclusions 

In this paper, we presented an approach to 
incorporating road information into target tracking via 
track to road fusion. In this approach, road segments 
were modeled with analytic functions and their fusion 
with a target track was cast as a linearly or nonlinearly 
state constrained optimization procedure. With the 
Lagrangian multiplier, a closed-form solution was 
found for linear constraints and an iterative solution for 
nonlinear constraints. Geometric interpretations of the 
solutions were provided for simple cases. Computer 
simulation results demonstrate the performance of the 
algorithms.  

Future work includes both algorithms development 
and practical applications. It is of interest to extend the 
iterative method presented in the paper for second-
order nonlinear state constraints to other types of 
nonlinear constraints of practical significance and to 
search for more efficient root-finding algorithms to 
solve for the Lagrangian multiplier. Similarly, the 
simple fusion of a single track to a single road as 
presented in this paper is being extended to multiple 
targets moving along closely-spaced road networks 

with intersections and by-passes. In this case, the 
fusion (or constraining) can take place in the 
measurement level as well as in the track level, 
involving road constrained data association (RCDA). 
Results will be reported in future papers. 
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